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Abstract
We study the influence of nanoparticles (NPs) on liquid crystal (LC) ordering. As regards the
structural ordering we consider NPs as a source of a quenched random field. Roughly such a
situation is encountered in mixtures of LCs and aerosil NPs (aerosil NPs are spherular ones).
Using the semi-microscopic lattice model and Brownian molecular simulation we show that
after a quench from the isotropic phase a quasi-stable domain pattern forms. The characteristic
size of an average domain is inversely proportional to the concentration of NPs, and domain
patterns exhibit memory effects. In the study of the phase behaviour we limit consideration to
NPs resembling LC molecules. A Landau-type free energy expression is derived for the
mixture, originating from the Maier–Saupe molecular approach. We show that the resulting
phase behaviour exhibits the slave–master behaviour as the temperature or pressure is varied.

1. Introduction

The past decade has witnessed an increased interest in the study
of two-component mixtures [1, 2], A + B, where B represents
nanoparticles (NPs) in a host material, A. A characteristic
feature of a NP is that at least one of its dimensions is limited
to being between 1 and 100 nm. The focus of current research
worldwide is on finding an appropriate combination A +B
yielding quantitatively dramatically enhanced or qualitatively
new features that the individual components do not exhibit on
their own. Such systems are expected to play important roles in
the emerging field of nanotechnology and also for composites
with extraordinary material properties.

We consider cases where the component A exhibits a
continuous symmetry breaking phase transition on varying
a control parameter. The latter is either the pressure or
temperature. In the continuum picture the degree of ordering
of the lower symmetry phase is given by the so called order
parameter field, and its structure by the gauge field [3]. These
fields can be scalars, vectors or tensors. The gauge field
exhibits a Goldstone fluctuation mode, ‘trying’ to recover
the lost symmetry in the symmetry broken phase. In the

case of imposed contradictory constraints this field typically
exhibits spatial variations on the geometrically imposed length
scale ξg (i.e., in the absence of external fields this length
does not depend on material properties) [4, 5]. On the other
hand the order parameter field responds to local perturbations
on the length scale given by the order parameter correlation
length ξ [4, 5], which attains the maximal value at the phase
transition. As the B component we consider noncritical and
chemically inert nanoparticles which act like a local field
on the component A. This field can have either ordering or
disordering tendencies.

If a component A suffers a sudden quench into the
lower symmetry phase, then unavoidably a domain pattern
forms. The basic ingredients of this ordering are simple:
(i) continuous symmetry breaking and (ii) causality (i.e., a
finite speed with which information spreads in a system). The
generality of these principles gives rise to a broad universality
of the phenomenon. The basic features of domain pattern
dynamics in a pure bulk system A can be well described by
the Kibble–Zurek mechanism [6, 7], which was originally
introduced to explain the formation of topological defects
in the early universe following the big bang, and are the
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following. If A is quenched into the lower symmetry
phase, then a randomly chosen configuration of the symmetry
breaking gauge field is established in causally disconnected
parts. This choice is based on local fluctuation mediated
preferences. Consequently a domain structure appears, which
is well characterized by a single domain length ξd(t) [6, 7].
With time t the domain growth gradually enters the dynamic
scaling regime, where the power law ξd(t) ∝ tγ is obeyed [8].
The universal scaling coefficient γ depends on whether a
conservation law for the order parameter exists or not. The
gauge field evolution across a domain wall obeys the geodesic
rule, i.e., it follows the shortest possible path in the continuum
field space.

In the case where B imposes a kind of disorder on A,
then in general the domain pattern becomes stabilized after
a long enough time. The resulting domain structure reflects
the balance between the ordering and disordering tendencies
in the system. The pioneering work on the resulting domain
structure has been done by Imry and Ma [9] on static grounds.
They studied the influence of non-correlated quenched disorder
on systems with a continuously broken symmetry and an
interaction energy density proportional to the square of the
gradient of the relevant order parameter. The Imry–Ma
argument claims that an arbitrary weak random field with
onefold symmetry (i.e., the field is linearly coupled to the
conjugated order parameter) breaks the system into a stable
domain-like pattern provided the spatial dimension d is less
than 4. Consequently, the (quasi-)long-range order of the
system is replaced by a short-range order. The characteristic
domain size ξd is predicted to scale as ξd ∝ w−2/(4−d),
where w is a measure of the disorder strength. However, the
applicability of this argument for various condensed matter
systems is still disputable [10–12].

We next consider the phase behaviour of the component
A in the presence of NPs in homogeneous mixtures. In
this respect several universal features (i.e., valid for a variety
of condensed matter systems) have been studied in liquid
crystal (LC) phases. It has been reported that A can exhibit
dramatically enhanced [13] or new material properties [14–18]
for even moderate concentrations c of NPs. For example, a
small concentration of ferroelectric colloids can significantly
amplify the nematic LC ordering [13]. The isotropic–nematic
transition temperature TIN can be dramatically increased
(temperature shifts up to 40 K); however, the qualitative LC
behaviour remains unchanged. On the other hand, LC–aerosil
NP mixtures (aerosil NPs are spherular ones [14]) typically
show a decreased TIN and increasingly changed qualitative LC
behaviour on increasing the concentration of NPs [14–17].

We henceforth use for demonstration purposes the nematic
LC phase [4] as the component A. On lowering the temperature
or increasing the pressure it is reached from the isotropic
(ordinary liquid) phase via the weakly first-order phase
transition in which the continuous orientational symmetry
is broken. In the nematic phase the molecules tend to be
oriented locally parallel. Consequently in bulk samples (in
which the influence of confining boundaries is negligible)
the molecules are on average aligned homogeneously along a
single symmetry breaking direction in the thermodynamically

stable state. Note that the LC phases (and different structures
within them) are often chosen [7, 19] as testing grounds of
basic mechanisms in physics for the following main reasons.
They are typical representatives of soft matter systems [4],
i.e., a relatively weak local perturbation can trigger responses
on experimentally easily accessible scales of length and
time. Samples with different LC structures can be readily
shaped by confining surfaces or external fields due to their
liquid and soft characteristics. LC phases are transparent
to light and have anisotropic electro-optic properties. They
can be studied using visible light, or they can be used to
manipulate light. Furthermore, there exist a large variety of
different LC phases and structures within them (e.g. induced
by different confining cavities, immersed particles, or external
ordering fields) exhibiting a rich gallery of universal physical
phenomena. The chemistry of LCs is relatively well developed,
so a desirable behaviour can also be tailored by chemists.

In the paper we analyse the influence of nanoparticles
(the component B) on the (i) domain structure and (ii) phase
behaviour of the nematic LC phase (the component A). We
show that the resulting domain pattern depends on the history
of the samples. We introduce the slave–master mechanism,
which reveals conditions when quantitative or qualitative
changes in phase behaviour of A are expected. The plan
of the paper is as follows. In section 2 we introduce the
semi-microscopic model and Brownian molecular dynamics,
with which we study the domain patterns. In section 3
we derive a Landau form of the free energy for a simple
bicomponent mixture originating from the Maier–Saupe mean
field approach. We introduce the universal slave–master
mechanism. In the last section we draw conclusions.

2. Structural behaviour

We first consider the structural behaviour in the nematic LC
phase in the presence of nanoparticles, which act as a kind of
disorder. For real samples such a case roughly corresponds
to mixtures of LC molecules and aerosil particles [14]. The
aerosils form a fractal-like network, which introduces to LC
molecules orientational frustration.

2.1. Semi-microscopic lattice model

To study the domain patterns in the nematic LC phase as a
function of the concentration c of nanoparticles and the history
of the samples we use the three-dimensional (3D) lattice
model. The lattice sites are occupied by rod-like molecules.
The orientation of the i th LC molecule is described by the
unit vector m⇀i . The interaction between the neighbouring LC
molecules is given by the modified Lebwohl–Lasher potential

fi j = − J

r 6

(
m⇀i · m⇀ j − 3η

r 2

(
m⇀i · r⇀i j

) (
m⇀ j · r⇀i j

))2

. (1)

Here r = |r⇀i j | = |r⇀i − r⇀ j | denotes the separation between
the i th and j th molecules, J is a positive interaction constant
and the parameter η describes the degree of orientational
anisotropy. The potential exhibits the so called head-to-
tail invariance of a typical nematic LC structure, i.e., the
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orientations ±m⇀i are physically equivalent. The case η =
0 is equivalent to the Lebwohl–Lasher (LL) model [21],
also referred to as the Maier–Saupe lattice model, which
corresponds in the continuum limit to the approximation of
equal Frank nematic elastic constants [4]. For η = 1 one gets
the induced-dipole–induced-dipole-type potential. However,
the interaction fi j yields nematic-like properties only for η <
0.3 [20]. Despite its simplicity, the LL model mimics well
the main static and dynamic properties of a typical isotropic–
nematic (I–N) phase transition. By studying cases with η > 0
we probe the impact of elastic anisotropies on the system
properties.

The system is enclosed within a cube of volume Na3
0 ,

where N is the number of molecules in the system. The
unit cell is the simple cubic one with the lattice constant a0.
At the systems’ boundary, periodic boundary conditions are
imposed. We further distribute nanoparticles of concentration
c to randomly chosen lattice sites r⇀(0)i of the system. The
i th nanoparticle enforces the orientation e⇀i on the j th
neighbouring LC molecule via the short-range potential

fi j = − Jw
r 6

(
e⇀i · m⇀ j − 3η

r 2

(
e⇀i · r⇀i j

) (
m⇀ j · r⇀i j

))2

. (2)

The orientations of unit vectors e⇀i are randomly distributed in
3D, and Jw stands for the orientational anchoring constant.

The interaction energy Wint of the whole sample is given
as a sum over all pair interactions. In calculations we limit
the interactions to the neighbours within a sphere of radius
2a0. Furthermore, we assume that Wint roughly equals the free
energy of the system.

The positions r⇀i of molecules are allowed to fluctuate
about the lattice points r⇀(0)i of the three-dimensional lattice. In
this way we get rid of the lattice induced ordering anisotropy
which is known to appear on choosing the unit cubic cell.
The random departures �r = |r⇀i − r⇀(0)

i | obey the Gaussian
statistics centred at�r = 0, the width of which depends on the
temperature T .

The orientation of the i th molecule is parametrized in the
laboratory frame as

m⇀i = (sinϑi cos ϕi , sinϑi sin ϕi , cosϑi), (3)

where ϑi = ϑ(r⇀i , t) and ϕi = ϕ(r⇀i , t) represent dynamic
variables of the model. The rotational dynamics of the system
is driven by the Brownian molecular dynamics. At each time
interval �t (one sweep) the molecular orientation at the i th
site is updated in the local frame r⇀′ = (x ′, y ′, z′) obeying the
equations [22]

ϑ
(x′)
i = −�t D

kBT

∑
j �=i

∂ fi j

∂ϑ
(x′)
j

+ ϑ
(x′)
i,r , (4a)

ϑ
(y′)
i = −�t D

kBT

∑
j �=i

∂ fi j

∂ϑ
(y′)
j

+ ϑ
(y′)
i,r , (4b)

in which the orientational diffusion tensor is diagonal. Its
eigenvalues are assumed to be degenerate, equal to D, and kB

is the Boltzmann constant. The z ′-axis of the local frame is

oriented along the long axis of a LC molecule. The angles
ϑ
(x′)
i and ϑ(y

′)
i describe small rotations of the i th molecule

about the x ′ and y ′ axes, respectively. The gradient of the
potential for these two rotations is calculated numerically. The
quantities ϑ(x

′)
i,r and ϑ(y

′)
i,r are stochastic variables obeying the

Gaussian probability distribution centred at ϑ(x
′)

i,r = ϑ
(y′)
i,r = 0,

where the distribution widths�ϑ(x
′)

r = �ϑ
(y′)
r are proportional

to
√

T [22]. The corresponding multiplicative constant is
chosen so as to yield a correct equilibrium value of the nematic
uniaxial order parameter S in the continuum picture. The
shortest time interval �t of the model in the simulation is set
by �t D = 0.01. For a typical nematic LC [4] this ranges
within the interval �t ≈ 0.1 μs to �t ≈ 0.001 μs depending
on the size of a molecule (i.e., in our model a molecule in fact
corresponds to a cluster of real molecules).

In order to link this semi-microscopic level with the
continuum mesoscopic level, we define the tensor order
parameter

q = 〈
m⇀i ⊗ m⇀i − I/3

〉
i
, (5)

where 〈· · ·〉i stands for the time averaging over relatively fast
molecular fluctuations and over the first neighbours of the
i th LC molecule, and I is the unit tensor. This definition
roughly matches with the definition of the Landau–de Gennes
tensor order parameter Q in the mesoscopic approach [4]. For
uniaxial nematic states one commonly expresses it as

Q = s
(
n ⊗ 
n − I/3

)
, (6)

where n⇀i is the so called nematic director field, and s ≈
1
2 〈3(n⇀ · m⇀i )

2 − 1〉i is the uniaxial order parameter. The unit
vector n⇀ points along the local uniaxial axis of an average
LC molecule. The isotropic (i.e. normal fluid) phase is
characterized by s = 0. Rigidly homogeneously aligned
nematic structure along n⇀ corresponds to s = 1. Note that
n⇀ and s play the roles of gauge and order parameter fields,
respectively, which are described in section 1. In calculations
we estimate a value of s by diagonalizing q , where its maximal
eigenvalue corresponds to s. The average order parameter S of
the sample is given by S = 1

N

∑
i s(r⇀i).

In the simulations we monitor in addition to S also the
average domain size. We estimate a typical linear size ξd of
an average domain of textures as follows. We calculate an
average volume Vd in which relatively small changes occur in
the orientational ordering. As the criterion of being in a domain
we choose |m⇀i ·m⇀ j | = 1−�, where the i th and j th molecules
are adjacent. We set � = 0.2, corresponding to the amplitude
of thermal fluctuations at approximately double width of the
Gaussian distribution. The domain size is estimated via ξd =
( 6Vd
π
)1/3.

2.2. Stable domain patterns

In figure 1 we show the time evolution of the domain
coarsening in the pure bulk LC sample (i.e., c = 0) following
a sudden isotropic–nematic phase transition. Soon after the
quench the scaling regime is entered, where ξd(t) ∝ t0.49.
The corresponding average order parameter evolution S(t)
is shown in figure 2. In the inset of the figure a typical

3
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Figure 1. The time evolution of characteristic domain length in a
bulk sample following the sudden quench from the isotropic phase.
Soon after the quench the scaling law ξd ∝ t0.49 is obeyed, which is
plotted with the dotted line. In simulations we set periodic boundary
conditions: N = 703, η = 0.

Figure 2. Time dependence of the average order parameter of the
system. The domains, which are shown in the inset, become apparent
when the value of the order parameter is strong enough.

domain structure is presented. Note that it is sensible to define
domains only after the so called Zurek time [7], at which the
degree of orientational order is strong enough, i.e. S(t) ≈ S.
Here S ≈ 0.8 stands for the saturated value of the order
parameter. Within each domain a rather uniform configuration
of the gauge field is established. Contradicting orientational
tendencies at domain walls can give rise to topological line
and point defects. The annihilation of these topological defects
of opposite winding number enables the domain growth.
There is growing numerical evidence that understanding of the
annihilation process of a pair of isolated topological defects
gives essential information on domain coarsening dynamics
(i.e. from the velocity of the defect pair annihilation one can
estimate well the domain coarsening dynamics). A detailed
study of such an annihilation process for the case of point
defects is given in [23]. Our simulations show negligible
influence on η.

We next study the influence of spatially quenched
impurities on the domain pattern. For this purpose we

Figure 3. Domain growth for different concentrations of
nanoparticles after sudden quenches from the isotropic phase or
homogeneously aligned structure. N = 703, η = 0.

Figure 4. Saturated average domain length values as a function of c
and history of the samples. N = 703, η = 0.

introduce a concentration c of randomly distributed impurities
imposing random directions in the space. The strength
of coupling of impurities with LC molecules is equal to
the LC molecule–LC molecule coupling (i.e., J = JW ;
see equations (1) and (2)). Our main goal is to find the
characteristic saturated domain length value ξd as a function
of c for different histories of the samples. For this purpose
we follow the domain length time evolution ξd(t) for different
concentrations c, where we quench the system starting (i) from
the isotropic phase, and (ii) from a perfectly homogeneously
aligned sample. The latter case corresponds to a sudden
switch-off of a strong external magnetic or electric ordering
field.

In figure 3 we show the ξd(t) dependences for different
concentrations of NPs for the cases (i) and (ii). For these cases
the ξd(t) values monotonically increase and decrease with
time, respectively. Soon after the quenches the domain patterns
stabilize. The saturated values ξd, shown in figure 4, exceed the
average distance between impurities. The patterns originating
from isotropic configurations have shorter values of ξd in
comparison to the structures reached from homogeneously
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aligned samples. In all cases the scaling ξd ∝ 1/c is well
obeyed.

3. Phase behaviour

We next consider the phase behaviour in a simple homoge-
neous LC + NP mixture, where LC molecules and nanopar-
ticles are comparable. In particular, we show that such systems
often display the slave–master type of behaviour.

3.1. Binary nematic mixture

Our aim is to obtain a free energy expression in a conventional
Landau-type phenomenological picture. To obtain an insight
into the structure and origin of phenomenological parameters
we start from the mean field Maier–Saupe approach on the
molecular level. We assume that the two components are
similar in size and shape (i.e., rod-like). Consequently, we can
treat them as a simple mesomorphic binary nematic mixture.
Starting from the molecular level we derive the expression for
the corresponding Landau free energy of the mixture in terms
of dominant order parameters.

We henceforth label the quantities referred to the i th
molecular component with the index i . The concentration
of the first component is c1 = 1 − c, and the second
one c2 = c. We set that the molecules are cylindrically
symmetric. The symmetry axis of a molecule points along the
unit vector m⇀i (�), where the solid angle �, is defined by the
two Euler angles ϑ and ϕ. The state of the i th component
is defined by the orientational distribution function pi(�).
The states with orientational ordering are distinguished by an
axis of symmetry, the director n⇀, and an infinite set of order
parameters [24]

P
(i)
2n =

∫
P2n(cosϑ)pi(�) d�, (7)

where n > 0 is an integer and P2n are the Legendre
polynomials. Among these order parameters the dominant role

is played by S1 = P
(1)
2 and S2 = P

(2)
2 , and we henceforth

neglect the remaining order parameters. In the isotropic phase
all molecular orientations are equivalent; therefore Pi (�) =

1
4π , S1 = S2 = 0.

In an ordered state some orientations are preferred. The
corresponding entropy change �� is given by [24]

�� = −kB

(
c1

∫
p1(�) ln(4πp1(�)) d�

+ c2

∫
p2(�) ln(4πp2(�)) d�

)
. (8)

In the framework of the Maier–Saupe theory, the anisotropic
contribution to the internal energy � is equal to [24]

� = − 1
2

(
ε11c2

1 S2
1 + 2ε12c1c2S1S2 + ε22c2

2 S2
2

)
, (9)

where εi i > 0 is the intermolecular orientational interaction
of the neighbouring molecules of type i , while εi j > 0
is the orientational interaction between different types of
neighbouring molecules. Therefore, we assume that the

molecules have the tendency to align parallel. One typically
assumes that the temperature dependences of the interaction
terms in equation (9) are negligible.

In this mean field approximation the free energy difference
� f between the ordered and disordered phase can be written
as

� f = kBT

(
c1

∫
p1(�) ln(4πp1(�)) d�

+ c2

∫
p2(�) ln(4πp2(�)) d�)

− 1
2

(
ε11c2

1 S2
1 + 2ε12c1c2S1 S2 + ε22c2

2 S2
2

)
. (10)

We further expand pi in terms of Legendre polynomials:

pi = 1

4π

∞∑
n=0

P
(i)
2n

4n + 1
P2n(cosϑ) ≈ 1

4π

(
1 + Si P2(cosϑ)

5

)

(11)
and expand � f in terms of S1 and S2. It follows that

� f ≈ c1

(
kB

250

(
T − c1T (1)

∗
)

S2
1 − kBT

13 125
S3

1 + kBT

87 500
S4

1

)

+ c2

(
kB

250

(
T − c2T (2)

∗
)

S2
2 − kBT

13 125
S3

2 + kBT

87 500
S4

2

)

− ε12c1c2S1S2, (12)

where T (i)∗ = 125εii
kB

. With this in mind we obtain the
conventional Landau–de Gennes expression for the free energy
density f :

f ≈ f0 + c1

(
a

2

(
T − (1 − c2)T

(1)
∗

)
S2

1 − B

3
S3

1 + C

4
S4

1

)

+ c2

(
a

2

(
T − (1 − c1)T

(2)
∗

)
S2

2 − B

3
S3

2 + C

4
S4

2

)

− ε12c1c2S1S2, (13)

where f0 is the free energy density of the isotropic phase, and
a, B , C are positive material constants. In the spirit of the
conventional Landau-type approach we henceforth assume that
the temperature variation of these constants is negligible in the
temperature regime of interest to us.

For ci = 1 this form of the free energy describes a
weakly first-order nematic–isotropic phase transition of the
i th component at the transition temperature T (i)

IN = T (i)∗ +
2B2

9aC . At T = T (i)
IN the two phases (the nematic one with

Si (T
(i)

IN ) = S0 ≡ 2B
3C , and the isotropic one with Si = 0) coexist

in equilibrium. T (i)∗ is the supercooling limit temperature
of the isotropic phase. For typical nematic liquid crystals
T (i)

IN − T (i)∗ ≈ 1 K and S0 ≈ 0.4. We further introduce non-
dimensional quantities. The order parameter is normalized
with respect to its value at the pure bulk phase transition,

i.e., S̃i = Si/S0, ri = T −T (i)∗
T (i)

IN −T (i)∗
is the reduced temperature,

� f̃ = ( f − f0)/F0 is the dimensionless excess free energy
density, where F0 = 4B4

81C3 . Omitting the tildes, the non-
dimensional excess free energy density becomes

� f = c1((r1 + λc2)S
2
1 − 2S3

1 + S4
1 )+ c2((r2 + λc1)S

2
2

− 2S3
2 + S4

2 )−wc1c2S1S2, (14)

where w measures the coupling strength, and λ measures the
transition temperature shifts due the presence of the other

5
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molecular component. The term c1c2(λ(S2
1 + S2

2 )−wS1 S2) ≡
χeffc1c2 is the driving force toward fractionation through phase
separation. Here χeff = λ(S2

1 + S2
2 ) − wS1S2 is an effective

Flory–Huggins interaction parameter [25], which is expected
to trigger the phase separation above its critical value χc = 2.
We henceforth assume that the mixtures are homogeneous.

3.2. Slave–master mechanism

The derivation above gives a rough insight into the expected
coupling term and into the structure of material constants
entering a free energy of a simple bicomponent mixture. Next,
we generalize the expression (14) into a more general form:

� f = f (1)c + κ f (2)c , (15a)

f (i)c = τi S2
i − 2S3

i + S4
i , (15b)

fint = −wSn1
1 Sn2

2 . (15c)

Here f (i)c stands for the condensation term of the i th
component, κ measures the relative weight of the condensation
terms in � f and fint represents the direct coupling between
the components. The generalized reduced temperatures τ1 and
τ2 trigger the first-order phase transition (the condensation)
in components at τi = 1 for fint = 0 (i.e., Si (τ1 =
1) = 1, Si (τ1 > 1) = 0). They can be controlled by the
temperature (as derived in equation (14)) or by pressure. For
demonstration purposes we express them for the temperature
driven transitions as

τi = T − T (i)∗
T (i)

c − T (i)∗
(16)

where T (i)
c and T (i)∗ stand for the phase transition and

supercooling temperature of the i th component for fint = 0,
respectively (for brevity we set λ = 0 in equation (14)). The
strength of the coupling term is measured by the interaction
constant w > 0. In order to generalize the potential to an
even broader class of different mixtures LC + NP, we set the
integers n1 and n2 in equation (15c) to either 1 or 2. For
example, the choice n1 = n2 = 1 corresponds to the derived
interaction potential in equation (14), while the choice n1 =
n2 = 2 roughly mimics the mixture of ferroelectric particles
and nematic LC molecules, as derived in [13].

In the following we consider the phase behaviour of the
system for the case T (1)

c < T (2)
c and sufficiently weak coupling

strengths w (i.e., for stronger enough coupling strength the
components behave as one component). We first focus on
the phase behaviour of the first component in the temperature
interval T (1)

c < T < T (2)
c . In this temperature interval the

second component is ordered, i.e. S2 > 0. If the S2 temperature
dependence is relatively weak, then the behaviour of S1(T ) is
approximately governed by the effective excess free energy

� feff = τ1S2
1 − 2S3

1 + S4
1 −weff S

n1
1 , (17)

where weff = wSn2
2 > 0.

For n1 = 1 the first component exhibits quantitative
changes in behaviour, which are discussed in detail in [5]. For

Figure 5. Illustration of the slave–master mechanism for
n1 = n2 = 1. On increasing w the S1(T ) (the slave) dependence
exhibits relatively large changes in comparison to S2(T ) (the master).
In simulations we set �T = T (1)

c − T (1)
∗ = T (2)

c − T (2)
∗ = 1 K,

T (1)
c = 100 K and T (1)

c = 101 K, κ = 1.

0 < weff < 0.5 the phase transition temperature T (1)
c,w is shifted

to
T (1)

c,w = T (1)
c + (

T (1)
c − T (1)

∗
)
weff (18)

and in the regime T (2)
c > T > T (1)

c,w it displays pretransitional
behaviour. For weff � 0.5 the temperature evolution of S1 is
gradual below T (2)

c .
For n1 = 2 the S1(T ) dependence exhibits only a

quantitative change in behaviour for weak enough positive
values of weff. The phase transition temperature is increased
and given by equation (18), with no pretransitional effects
above T (1)

c,w .
We next consider the behaviour of the second component,

which is only slightly quantitatively changed. For temperatures
T < T (2)

c the S2(T ) dependence exhibits only a slight
increase in ordering for w > 0. For T > T (2)

c both free
energy condensation terms in equation (14) favour Si = 0.
Consequently the components are decoupled and the S2(T )
dependence is governed solely by f (2)c .

In such a behaviour we refer to the components 1 and 2 as
the slave and master, respectively. The slave is characterized
by a weaker intermolecular potential, i.e., lower value of the
phase transition temperature, in comparison to the master for
the pure components. The phase behaviour of the slave is
strongly affected by the presence of the master, while the
reverse influence is negligible if the coupling is not too strong.
A numerical analysis of this behaviour is shown in figure 5 for
n1 = n2 = 1.

4. Conclusions

We study theoretically the phase and structural behaviour of
a liquid crystal (LC) in a mixture of a liquid crystal and
nanoparticles (NPs) of concentration c � 1. The behaviour is
analysed across the isotropic–nematic (I–N) phase transition,
which can be crossed either by changing temperature or
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pressure. Focus is on universal features that are of interest also
for other condensed matter systems.

We first consider the structural behaviour in the nematic
phase. To monitor the domain structure we use the semi-
microscopic lattice model and Brownian molecular dynamics.
The LC is quenched from the isotropic phase in the presence of
NPs, which influence the LC orientational degree of ordering
like a quenched random anisotropy field. Examples of such
systems are mixtures of LCs and aerosil particles. For c �
0.01 the aerosil NPs form a fractal-like network, which is
adaptive for c < 0.1 and rigid for c > 0.1 [15–17].
Therefore, in such systems partially annealed or quenched
disorder is present depending on the concentration of NPs. In
simulations we studied quasi-equilibrium domain structures,
that are stabilized by the presence of randomly distributed
NPs. The domain structure is well characterized by a single
length ξd ∝ 1/c, in accordance with experimental results
on aerosil–LC mixtures [26]. This length is larger than the
average separation between particles and reflects the history
of the sample. To demonstrate memory effects we quench
systems either from the isotropic or from homogeneously
aligned structure, which resulted in different ξd values. The
results obtained are qualitatively valid for any system which
suffers a sudden symmetry breaking phase transition.

We further analyse the phase behaviour of a bicomponent
nematic mixture. In this case we assume that NPs are rod-
like and similar to LC molecules, and exhibit mesomorphic
behaviour. We derive the Landau-type free energy expressed in
terms of the dominant order parameters S1 and S2 starting from
the Maier–Saupe approach on the molecular level. This study
gives us insight into the structure of different terms that enter
the phenomenological free energy expression. We demonstrate
that the resulting coupling term gives rise to the slave–master
behaviour for weak enough coupling constants w. The role
of the master is played by the component with stronger
intermolecular interaction, which reflects in the higher phase
transition temperature. We show that the phase behaviour of
the slave is strongly affected by the master, while the reverse
influence is negligible. Depending on the character of the
coupling term, the master can influence the slave qualitatively
or quantitatively. For stronger couplings the components
become strongly coupled and behave like a single-component
system. Detailed understanding of this mechanism is in our
opinion of great importance. It suggests how one can control
phase behaviour of a slave by adding an adequate concentration
of a master, where the coupling between the systems is
appropriate. An experimental illustration of such a mechanism
is the recent observation of a mixture of ferroelectric particles
and LC [13]. The free energy coupling term structure is
approximately of type −wS2

1 S2
2 and triggers only quantitative

changes in the LC behaviour (i.e., the slave experiences fint =
−weffS2

1 ). Another example represents the coupling between
the nematic orientational S and the smectic translational order
parameter ψ in n CB liquid crystals. Note that in this case we

have a single-component structure, where S1 = ψ and S2 = S.
On increasing the so called de Gennes coupling strength w [3]
(in the coupling term of the form fint = −wSψ2), which can
be realized by increasing n of for n CB molecules, the smectic
A phase exhibits qualitative change in behaviour. On the other
hand the I–N behaviour remains essentially the same for weak
enough values of w. In this case the slave (i.e., the smectic
degree of ordering) experiences the effective coupling fint =
−weffψ

2. Therefore, the proposed slave–master mechanism is
valid for general systems with coupled order parameter, that
exhibit critical phase behaviour.

In our future study we will analyse in detail the
applicability of the Imry–Ma theorem for the LC + NP
mixtures. The scaling relation between ξd and the disorder
strength for different concentrations of NPs and the range of
ordering will be systematically analysed. We will study the
behaviour above and below the NP percolation threshold. Our
preliminary investigations suggest that the Imry–Ma scaling
is not always obeyed. Furthermore, the structures obtained
via quenching from the (i) isotropic and (ii) homogeneously
aligned structure seemed to be qualitatively different.
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